Abstract

We report the interfacial properties of monolayers of Ag nanoparticles 10-50 nm in diameter formed at the toluene-water interface under steady as well as oscillatory shear. Strain amplitude sweep measurements carried out on the film reveal a shear thickening peak in the loss moduli (G") at large amplitudes followed by a power law decay of the storage (G') and loss moduli with exponents in the ratio 2:1. In the frequency sweep measurements at low frequencies, the storage modulus remains nearly independent of the angular frequency, whereas G" reveals a power law dependence with a negative slope, a behavior reminiscent of soft glassy systems. Under steady shear, a finite yield stress is observed in the limit of shear rate .gamma going to zero. However, for .gamma > 1 s-1, the shear stress increases gradually. In addition, a significant deviation from the Cox-Merz rule confirms that the monolayer of Ag nanoparticles at the toluene-water interface forms a soft two-dimensional colloidal glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.