Abstract
Direct oxidative coupling of alcohols with amines over cheap but efficient catalysts is a promising choice for imine formation. In this study, porous CeO2-MnO2 binary oxides were prepared via an interfacial reaction between Ce2(SO4)3 and KMnO4 at room temperature without any additives. The as-prepared porous CeO2-MnO2 catalyst has a higher fraction of Ce3+, Mn3+, and Mn4+ and contains larger surface area and more oxygen vacancies. During the oxidative coupling reaction of alcohol with amine to imine, the as-obtained CeO2-MnO2 catalyst is motivated by the above encouraging characteristics and exhibits superior catalytic activity (98% conversion and 97% selectivity) and can also work effectively under a wide scope of temperatures and substrates. The in-depth in situ DRIFTS and density functional theory (DFT) results demonstrate that there is a strong interaction between CeO2 and MnO2 in the CeO2-MnO2 catalyst, exhibiting especially a positive synergistic effect in the direct coupling of alcohol and amine reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.