Abstract

Several Sn-Ag-Cu lead-free solders and two kinds of metallic substrates, Cu and Cu/Ni/Au, were selected to explore the effect of microelements (Ni and Ge) on the interfacial reaction between solder and substrates. When solders reacted with Cu substrate, the thickness of the interfacial intermetallics of the Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge (in wt%) solder is several times as that of the Sn-3.5Ag-0.7Cu solder. Besides, the addition of microelements would transfer the feature of interfacial intermetallics from pebble shape to worm shape. However, the negligible difference in XRD data of these two alloys suggests that both interfacial intermetallics have the same crystal structure. The major interfacial intermetallic formed with Sn-3.5Ag-0.7Cu solder is Cu/sub 6/Sn/sub 5/, while it is (Cu/sub x/, Ni/sub 1-x/)/sub 6/Sn/sub 5/ with the solder containing Ni and Ge. The results of Electron Probe Microanalyzer (EPMA) investigation show that the aggregation of Ni in the interfacial intermetallics affects the interfacial reaction rate and the morphology of interfacial intermetallics. On the other hand, the features of the interfacial layer formed with a Cu/Ni/Au substrate are similar for the Sn-3.2Ag-0.5Cu and Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge solders. However, Ni and Ge enhance the shear strength of BGA solder ball attachment. The results of the cross section investigation indicate that the interfacial intermetallics were composed of coarse (Cu/sub y/, Ni/sub 1-y/)/sub 6/Sn/sub 5/ and fine uniformly dispersed Ni/sub 3/Sn/sub 4/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.