Abstract
This study investigated the reaction between CaO-SiO2-Al2O3-xFeO-MgO-MnO (CaO/SiO2 = 1.2, x = 20–50 wt%) slag and magnesia refractory. Using SEM-EDS analysis, we confirmed the formation of a (Mg,Fe)Oss(solid_solution), called magesiowüstite (MW), intermediate layer at the slag-refractory interface. MgO dissolved from refractory and reacted with the bulk slag to form MW layer at the interface. Simultaneously, slag penetrated through micro-pores and reacted with the refractory to form MW layer. In other words, the MW layer built up in both directions from initial refractory-slag interface. The thickness of the MW layer increased as the FeO content in the slag increased, and using EDS line scanning, a Mg and Fe concentration gradient was confirmed within the MW layer. The slag, which penetrated into the refractory, had a chemical composition of the CaO-SiO2-Al2O3-MgO system without FeO, indicating that FeO was consumed by forming a MW layer at the refractory hot face. The slag-refractory interfacial reaction was simulated using thermochemical software, FactSage™7.0. The results predicted a MW monoxide composed of MgO and FeO. A spinel phase was formed when FeO was greater than 40 wt%. These thermochemical computations were comparable to our experimental findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.