Abstract

In this work we employed photoreflectance spectroscopy over the temperature range 11-300K to investigate the heterointerfaces of a strained piezoelectric InGaAs∕GaAs single quantum well structure grown on a (111)AGaAs substrate by metalorganic vapor phase epitaxy. Photoreflectance spectroscopy measurements in combination with a theoretical analysis using the quantum well structural parameters obtained by high-resolution x-ray diffractometry enabled us to evaluate separately the abruptness and roughness of the quantum well interfaces. The excellent agreement between the experimental and calculated transition energies for a quantum well structure with a well width of 41Å and 13% In demonstrates that the heterointerfaces are abrupt. From a theoretical analysis of the temperature dependence of the photoreflectance broadening parameters, based on the Bose-Einstein phonon-coupling model, we determined the longitudinal optical phonon energy and the electron-phonon coupling strength. This analysis shows an interface roughness of less than ±1 monolayer. These results in conjunction with the observation of a narrow photoluminescence linewidth of 9.1meV indicate the achievement of essentially atomically smooth interfaces in a highly strained (∼1%) piezoelectric InGaAs∕GaAs quantum well structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.