Abstract

AbstractPreparation and characterization of novel composites, consisting of polypropylene (PP) fibres in a random poly(propylene-co-ethylene) (PPE) matrix, were investigated. These composites possess unique properties, due to chemical compatibility of the two polymers allowing creation of strong physico-chemical interactions and strong interfacial bonds. The difference between the melting temperatures of PP fibre and PPE was exploited in order to establish processing conditions for the composites. Suitable conditions were chosen so that the matrix was a liquid, to ensure good wetting and impregnation of the fibres, though the temperature must not be high enough to melt the fibres. The morphology of the composites was investigated using optical and scanning electron microscopy. Optical microscope images showed that transcrystallization of the matrix was observed on PP fibre surfaces. SEM photographs displayed a thin layer of matrix on the reinforcement, attributed to good impregnation and wetting of the fibres. Adhesion between PPE matrix and PP fibres was characterized using a microbond test inspired by a fibre pull-out technique. The results showed that adhesion was appreciably increased when PP fibres were used instead of glass fibres in the matrix. Nevertheless, thermal processing conditions of the composites caused reduction in mechanical behaviour of the reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call