Abstract

Abstract The thermal resistance of glass fiber reinforced composites (GFRC) is often required for optimum performance. In the research reported in this paper two Si-type nanoparticles (SiC and SiO 2 ) added to GFRC were investigated. It was found that tensile and compressive strength of epoxy matrix composites changed with thermal aging. Differential scanning calorimetry (DSC) analysis disclosed that the epoxy-SiC composite had better thermal resistance than epoxy-SiO 2 . Microdroplet pull-out and short beam tests were used to determine interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) between the epoxy matrix with the different Si nanoparticles and glass fibers. The reinforcing effects, the thermal resistance and the interfacial properties of the glass fiber/epoxy composites differed for the two types of Si nanoparticles, which was attributed to differences in their bonding. The addition of SiC nanoparticles produced the more thermal resistant composites, which is thought to be due to it inducing strong covalent bonding due to the “dangling bond effect” while SiO 2 induces rather weak hydrogen bonding by means of its oxygen. The SiC nanocomposites induced not only better thermal resistance but also better mechanical reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.