Abstract

In situ atomic force microscopy (AFM) and spectroscopic ellipsometry were used to study the mechanism of organic carbonate electrolytes decomposition and surface layer (re)formation at β-Sn(001) and (100) single crystal electrodes. Interfacial phenomena were investigated at potentials above 0.8 V vs. Li/Li +, i.e. where no Sn–Li alloying takes place. The Sn(001) electrode tends to form a protective surface layer of electrolyte reduction products during the first cathodic CV scan, which effectively inhibits further reduction of the electrolyte upon cycling. In contrast, the Sn(100) electrode produces a thick, inhomogeneous and unstable surface layer. The observed significant difference of Sn reactivity toward the electrolyte as a function of Sn surface crystalline orientation suggests radically different reaction paths, reduction products, and properties of the surface film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.