Abstract

A simple scalable strategy is proposed to fabricate highly permeable antifouling nanofiltration membranes. Membranes with a selective thin polyamide layer were prepared via interfacial polymerization incorporating building blocks of zwitterionic copolymers. The zwitterionic copolymer, poly(aminopropyldimethylaminoethyl methacrylate)- co-poly(sulfobetaine methacrylate) with an average molecular weight of 6.1 kg mol-1, was synthesized in three steps: (i) polymerization of dimethylaminoethyl methacrylate to yield the base polymer by atom transfer radical polymerization (ATRP), (ii) fractional sulfobetainization via quaternization, and (iii) amination via quaternization. The effect of the zwitterionic polymer content on the polyamide surface characteristics, fouling resistance, and permeance is demonstrated. The zwitterion-modified membrane becomes more hydrophilic with lower surface roughness, as the zwitterionic polymer fraction increases. The excellent fouling resistance of the zwitterion-modified membrane was confirmed by the negligible protein adsorption and low bacteria fouling compared to a pristine membrane without zwitterionic segments. In addition, the zwitterion-modified membranes achieve a water permeation around 135 L m-2 h-1bar-1, which is 27-fold higher than that of the pristine membrane, along with good selectivity in the nanofiltration range, confirmed by the rejection of organic dyes. This permeance is about 10 times higher than that of other reported loose nanofiltration membranes with comparable dye rejection. The newly designed membrane is promising as a highly permeable fouling resistant cross-linked polyamide network for various water treatment applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.