Abstract
A comprehensive description of the phenomena at the low-alloy Fe-C-O-Ni steel/corundum interface at elevated temperatures up to 1600 °C was performed using the sessile drop method, Differential Thermal Analysis (DTA), 3D Differential Scanning Calorimetry (3D DSC) as well as several supporting methods, namely Energy Dispersive X-Ray (EDX), X-Ray Diffraction (XRD) analyses and Scanning Electron Microscopy (SEM). Steel samples with different carbon (0.04–1.56 wt%) and nickel (1.08–4.48 wt%) contents were selected to assess the effect of temperature and chemical composition on the related quantities, namely density, surface and interfacial tension, wetting angles, and the work of adhesion. While increased nickel content caused a decrease in wetting angle, and surface and interfacial tension values, the increased carbon content had the opposite effect. Two distinctly different modes of high-temperature interaction at the phase interface were also described. Little interaction was observed between the steel with lower carbon content (<0.1 wt%) and the corundum substrate. On the contrary, a more substantial interaction occurred in steel with higher carbon content and thus lower liquidus temperature. There was significant disruption of the corundum substrate at the surface and in depth up to 140 µm. The original corundum structure was replaced by new structural phases, particularly hibonite, grossite and gehlenite. In addition, when a higher chromium content was present in the steel, chromium-doped corundum was formed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.