Abstract

In previous studies we developed a RF magnetron sputter technique for the production of thin Ca-P coatings. With this technique coatings can be produced that vary in Ca/P ratio as well as in structural appearance. The aim of this investigation was to obtain more understanding of the biological behavior of these coatings by way of in vitro experiments. The effect of noncoated titanium (Ti) and three different Ca-P-sputtered surfaces on the proliferation and differentiation (morphology and matrix production) of osteoblast-like cells was studied. Proliferation was determined using counting procedures; morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fluorescent markers and energy-dispersive X-ray microanalysis (EDX) were used to obtain quantitative and compositional information about the resultant calcified extracellular matrix (ECM). Results demonstrated that proliferation of the osteoblast-like cells was significantly (p < 0.05) higher on noncoated than on Ca-P-coated samples. On the other hand, more mineralized ECM was formed on the coated surfaces. In addition, TEM confirmed that the cells on the coated substrates were surrounded by ECM with collagen fibers embedded in crystallized, needle-shaped structures. On the basis of these findings, we concluded that: (1) the investigated Ca-P sputter coatings possess the capacity to activate the differentiation and expression of osteogenic cells, and (2) bone formation proceeds faster on Ca-P surfaces than on Ti substrates. Further, this bone-inductive effect appeared to be dependent on the Ca-P ratio of the deposited coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.