Abstract
The influence of the interfacial energy on the material phase stability is investigated for a series of TiV multilaminate thin films. Experiments reveal that at a higher layer thickness, the α (hcp) phase is the most stable. As the layer thickness is reduced, a transformation from the α (hcp) phase to the β (bcc) phase occurs. Atomic-scale characterization of the transformed specimen by atom probe tomography reveals V interfacial diffusion between the layers. Equivalent crystal theory based calculations confirm the V interfacial diffusion mechanism. The predicted segregation profiles match those obtained experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.