Abstract

Insights into how to control the activity and selectivity of the electrochemical CO2 reduction reaction are still limited because of insufficient knowledge of the reaction mechanism and kinetics, which is partially due to the lack of information on the interfacial pH, an important parameter for proton-coupled reactions like CO2 reduction. Here, we used a reliable and sensitive pH sensor combined with the rotating ring-disk electrode technique, in which a functionalized Au ring electrode works as a real-time detector of the OH- generated during the CO2 reduction reaction at a gold disk electrode. Variations of the interfacial pH due to both electrochemical and homogeneous reactions are mapped and the correlation of the interfacial pH with these reactions is inferred. The interfacial pH near the disk electrode increases from 7 to 12 with increasing current density, with a sharp increase at around -0.5 V vs. RHE, which indicates a change of the dominant buffering species. Through scan rate-dependent voltammetry and chronopotentiometry experiments, the homogenous reactions are shown to reach equilibrium within the time scale of the pH measurements, so that the interfacial concentrations of different carbonaceous species can be calculated using equilibrium constants. Furthermore, pH measurements were also performed under different conditions to disentangle the relationship between the interfacial pH and other electrolyte effects. The buffer effect of alkali metal cations is confirmed, showing that weakly hydrated cations lead to less pronounced pH gradients. Finally, we probe to which extent increasing mass transport and the electrolyte buffer capacity can aid in suppressing the increase of the interfacial pH, showing that the buffer capacity is the dominant factor in suppressing interfacial pH variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.