Abstract

The structural behavior of model assemblies composed of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two main galactolipids found in plants, was investigated at the air/water interface and in aqueous dispersion. To approach the composition of the natural photosynthetic membranes, tunable Langmuir model membrane of galactolipids (GL) were used, and were complexified to form either heterogenous binary or ternary assemblies of GL, phospholipids (PL), and phytosterols (pS).The impact of pS, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or both on the structural properties of GL membrane was studied. The nature of the interactions between the different molecules was investigated using biophysical characterizations (ellipsometry, tensiometry, atomic force microscopy). In addition, the phase behavior was determined by SAXS analysis on the model assemblies in aqueous dispersions.Results revealed the good interfacial stability of these specific plant membrane lipids. The morphology of the GL film was characteristic of a fluid phase, with an interfacial roughness induced by the intercalation of monogalactosyl and digalactosyl polar heads of MGDG and DGDG, respectively. A phase heterogeneity in the monolayer was induced by the addition of DPPC and/or pS, which resulted in the modification of galactolipid organization and headgroup interactions. These structural changes were confirmed by SAXS analysis, showing more favorable interactions between MGDG and DPPC than between DGDG and DPPC in aqueous dispersion. This phenomenon was exacerbated in the presence of pS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.