Abstract

A novel interfacial reaction nucleation mechanism for the preparation of water-soluble Ag-In-S quantum dots (AIS QDs) was proposed in which interfacial acid regulates the concentration of hydroxide ions outside the complex and sulfur sources attack cations at the interface of the complex, covalent bonds between cations and sulfur sources are formed at the interface of the complex, and the nucleation and growth of crystals is finished at room temperature. By bypassing the heating process normally necessary for crystal nucleation and growth, AIS QDs can be produced on a large scale under simple, mild conditions. At the same time, the characteristics of this mechanism enable AIS QDs to be directly synthesized in an organic pollutant solution. This study represents a significant advance in the mechanism of crystal synthesis and contributes to the photocatalytic decomposition of organic pollutants from theory to practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call