Abstract

Two-dimensional metal–organic frameworks (2D MOFs) hold great promise as electrochemically active materials. However, their application in MOF nanocomposite electrodes in solution engineering is limited by structural self-stacking and imperfect conductive pathways. In this study, we used meso-tetra(4-carboxyphenyl) porphine (TCPP) with off-domain π-bonds to reconstitute Zn-TCPP (ZMOF) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) through an interfacial modulation strategy involving electrostatic coupling and hydrogen bonding, creating a conductive composite with a nanosheet structure. The negatively charged PSS and ZMOF formed a three-dimensional interconnected conductive network with excellent interfaces. The positively charged PEDOT, fine tuned with the lamellar structure, established strong π-π stacking interactions between the porphyrin and thiophene rings. ZMOF also induced changes in the PEDOT chain structure, weakening PSS entanglement and enhancing charge-transport properties. The specific capacitance of the prepared supercapacitor was as high as 967.8 F g−1. Flexible supercapacitors produced on a large scale using dispensing printing technology exhibited an energy density of 1.85 μWh cm−2 and a power density of 7.08 μW cm−2. This interfacial modulation strategy also exhibited excellent wearable properties, with 96 % capacitance retention at a 180° bending angle and stable cycling performance. This study presented a significant advancement in the functionalization of 2D materials, highlighting their potential for device-grade capacitive architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.