Abstract

Sn-based anodes are promising high-capacity anode materials for low-cost lithium ion batteries. Unfortunately, their development is generally restricted by rapid capacity fading resulting from large volume expansion and the corresponding structural failure of the solid electrolyte interphase (SEI) during the lithiation/delithiation process. Herein, heterostructural core-shell SnO2-layer-wrapped Sn nanoparticles embedded in a porous conductive nitrogen-doped carbon (SOWSH@PCNC) are proposed. In this design, the self-sacrificial Zn template from the precursors is used as the pore former, and the LiF-Li3N-rich SEI modulation layer is motivated to average uniform Li+ flux against local excessive lithiation. Meanwhile, both the chemically active nitrogen sites and the heterojunction interfaces within SnO2@Sn are implanted as electronic/ionic promoters to facilitate fast reaction kinetics. Consequently, the as-converted SOWSH@PCNC electrodes demonstrate a significantly boosted Li+ capacity of 961 mA h g-1 at 200 mA g-1 and excellent cycling stability with a low capacity decaying rate of 0.071% after 400 cycles at 500 mA g-1, suggesting their great promise as an anode material in high-performance lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.