Abstract

Protein adsorption is of great significance for bioengineering, biomedicine, drug release, etc. Herein, poly-N-isopropylacrylamide (PNIPAm) and polyethylene glycol diacrylate (PEGDA) based hydrogel materials were used to introduce self-synthesized cavitands with pore cage structures and hydrophobic characteristics to construct high-efficiency hydrogel composite membrane (HCM) for the adsorption of bovine serum albumin (BSA). The hydrophobic cavitand cage can improve the interfacial polymerization process by impacting the monomer diffusion and then modifying the interface properties of the hydrogel molecular network, which is validated by the molecular dynamic simulation. The adsorption mechanism can be interpreted as the reorganization of the polymer pores using the cavitands, and hence the surface charge and hydrophobic property consequently changed, which is consistent with the measurement results as well as validated by the molecular dynamic simulation. Thus, the fabricated HCM exhibits good structural stability, thermal stability, and robust BSA adsorption performance. The results indicated that the developed HCM materials can be promising candidates for effective protein separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.