Abstract

A new bone augmenting material is reported, which is formed from calcium-loaded hydrogel-based spheres. On immersion of these spheres in a physiological medium, they become surrounded with a sheath of precipitate, which ruptures due to a build-up in osmotic pressure. This results in the formation of mineral tubes that protrude from the sphere surface. When brought into close contact with one another, these spheres become fused through the entanglement and subsequent interstitial mineralization of the mineral tubules. The tubular calcium phosphate induces the expression of osteogenic genes (runt-related transcription factor 2 (RUNX2), transcription factor SP7 (SP7), collagen type 1 alpha 1 (COL1A1), and bone gamma-carboxyglutamic acid-containing protein (BGLAP)) and promotes the formation of mineral nodules in preosteoblast cultures comparable to an apatitic calcium phosphate phase. Furthermore, alkaline phosphatase (ALP) is significantly upregulated in the presence of tubular materials after 10 d in culture compared with control groups (p < 0.001) and sintered apatite (p < 0.05). This is the first report of a bioceramic material that is formed in its entirety in situ and is therefore likely to provide a better proxy for biological mineral than other existing synthetic alternatives to bone grafts.

Highlights

  • A new bone augmenting material is reported, which is formed from calciumbecoming intermeshed, which loaded hydrogel-based spheres

  • A range of synthetic materials have been tubular calcium phosphate induces the expression of osteogenic genes (runtrelated transcription factor 2 (RUNX2), transcription factor SP7 (SP7), collagen type 1 alpha 1 (COL1A1), and bone gamma-carboxyglutamic acid-containing protein (BGLAP)) and promotes the formation of mineral nodules in preosteodeveloped that are capable of filling hard tissue defects to overcome the issues that are often associated with autologous tissue harvesting, such as local tissue morbidity and lack of availability.[1,2]

  • Materials after 10 d in culture compared with control groups (p < 0.001) and sintered apatite (p < 0.05). This is the first report of a bioceramic material that is formed in its entirety in situ and is likely to provide a better proxy for biological mineral than other existing synthetic alternatives to bone grafts

Read more

Summary

University of Birmingham

Erik; Cox, Sophie; Cooke, Megan; Davies, Owen; Williams, Richard; Hall, Thomas; Grover, Liam.

Link to publication on Research at Birmingham portal
One preserved feature of hard tissue is the presence of intricate
Experimental Section
Findings
Conflict of Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.