Abstract
Protein emulsifiers play an important role in formulation science, from food product development to emerging applications in biotechnologies. The impact of mixed protein assemblies on surface composition and interfacial shear mechanics remains broadly unexplored, in comparison to the impact that formulation has on dilatational mechanics and surface tension or pressure. In this report, we use interfacial shear rheology to quantify the evolution of interfacial shear moduli as a function of composition in bovine serum albumin (BSA)/β-casein mixed assemblies. We present the pronounced difference in mechanics of these two protein, at oil interfaces, and observe the dominance of β-casein in regulating interfacial shear mechanics. This observation correlates well with the strong asymmetry of adsorption of these two proteins, characterised by fluorescence microscopy. Using neutron reflectometry and fluorescence recovery after photobleaching, we examine the architecture of corresponding protein assemblies and their surface diffusion, providing evidence for distinct morphologies, but surprisingly comparable diffusion profiles. Finally, we explore the impact of crosslinking and sequential protein adsorption on the interfacial shear mechanics of corresponding assemblies. Overall, this work indicates that, despite comparable surface densities, BSA and β-casein assemblies at liquid–liquid interfaces display almost 2 orders of magnitude difference in interfacial shear storage modulus and markedly different viscoelastic profiles. In addition, co-adsorption and sequential adsorption processes are found to further modulate interfacial shear mechanics. Beyond formulation science, the understanding of complex mixed protein assemblies and mechanics may have implications for the stability of emulsions and may underpin changes in the mechanical strength of corresponding interfaces, for example in tissue culture or in physiological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.