Abstract

Physicochemical processes that take place at the oil-water interface of an epoxy-amine emulsion polymerisation system influence the properties and structural morphology of the polymeric microparticles formed. Investigating these processes, such as the transport of monomers across the liquid/liquid interface brings new understanding which can be used to tune polymeric morphology. Two different approaches are used to provide new insights on these processes. Microelectrochemical measurements at expanding droplets (MEMED) is used to measure the transfer of amine from an organic phase comprised of epoxide and amine into an aqueous receptor phase. The rate of amine transfer across the liquid/liquid interface is characterised using MEMED and finite element method modelling and kinetic values are reported. Time lapse microscopy of epoxide droplets held in deionised water or an aqueous amine solution heated to different temperatures is further used to characterise epoxide dissolution into the aqueous phase. Mass-transport of epoxide into the aqueous phase is shown to be temperature-dependent. Epoxide homopolymerisation at the droplet-water interface is found to influence the rate of epoxide droplet dissolution. The rate of the epoxy-amine cure reaction is shown to be faster than the rate of the epoxide homopolymerisation reaction. The combination of methods used here is not limited to emulsion polymerisation and should find application in a myriad of processes at liquid/liquid interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.