Abstract
Interfacial coupling between neighboring layers of van der Waals heterostructures (vdWHs), formed by vertically stacking more than two types of two-dimensional materials (2DMs), greatly affects their physical properties and device performance. Although high-resolution cross-sectional scanning tunneling electron microscopy can directly image the atomically sharp interfaces in the vdWHs, the interfacial coupling and lattice dynamics of vdWHs formed by two different types of 2DMs, such as semimetal and semiconductor, are not clear so far. Here, we report the ultralow-frequency Raman spectroscopy investigation on interfacial couplings in the vdWHs formed by graphene and MoS2 flakes. Because of the significant interfacial layer-breathing couplings between MoS2 and graphene flakes, a series of layer-breathing modes with frequencies dependent on their layer numbers are observed in the vdWHs, which can be described by the linear chain model. It is found that the interfacial layer-breathing force constant between MoS2 and graphene, α0⊥(I) = 60 × 1018 N/m3, is comparable with the layer-breathing force constant of multilayer MoS2 and graphene. The results suggest that the interfacial layer-breathing couplings in the vdWHs formed by MoS2 and graphene flakes are not sensitive to their stacking order and twist angle between the two constituents. Our results demonstrate that the interfacial interlayer coupling in vdWHs formed by two-dimensional semimetals and semiconductors can lead to new lattice vibration modes, which not only can be used to measure the interfacial interactions in vdWHs but also is beneficial to fundamentally understand the properties of vdWHs for further engineering the vdWHs-based electronic and photonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.