Abstract

In order to develop a mechanistic model for the subcooled flow boiling process, the key issues which must be addressed are wall heat flux partitioning and interfacial (condensation) heat transfer. The sink term in the two-fluid models for void fraction prediction is provided by the condensation rate at the vapor–liquid interface. Low pressure subcooled flow boiling experiments, using water, were performed using a vertical flat plate heater to investigate the bubble collapse process. A high-speed CCD camera was used to record the bubble collapse in the bulk subcooled liquid. Based on the analyses of these digitized images, bubble collapse rates and the associated heat transfer rate were determined. The experimental data were in turn used to correlate the bubble collapse rate and the interfacial heat transfer rate. These correlations are functions of bubble Reynolds number, liquid Prandtl number, Jacob number, and Fourier number. The correlations account for both the effect of forced convection heat transfer and thickening of the thermal boundary layer as the vapor bubble condenses which in turn makes the condensation heat transfer time dependent. Comparison of the measured experimental data with those predicted from the correlations show that predictions are well within ±25% of the experimentally measured values. These correlations have also been compared with those available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call