Abstract

The premises upon which prevailing composite toughness theories are based are discussed in the light of observed strength variations in boron-epoxy composites with differing shear strengths of the interfacial bond. None of the extant toughness theories (pull-out, debonding, stress redistribution) successfully predicts the work of fracture of the boronepoxy system. However, incorporation of the work to create new surfaces into the total toughness analysis gives better agreement with experiment, and work of fracture predictions for other sytems, such as carbon-polyester, can also be modified. The approach is more generalized than the Outwater/Murphy debonding explanation for toughness, which in the way usually presented only applies when the filament fracture strain is greater than the matrix fracture strain. The present analysis suggests how to tailor the interfacial shear strength in order to obtain a reasonable toughness yet still maintain strengths of the order of the rule of mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.