Abstract
Compared with the former studies, the perturbation behavior of thermocapillary–buoyancy convection caused by the simultaneous coupling response of the microscale surface flow, free surface deformation and spatiotemporal evolution of flow patterns is revealed by the combination of experimental and numerical methods for the first time. The free surface morphology transforms from the ‘Ƨ’-shape into the twisted ‘M’-shape in the corresponding balanced stage of thermocapillary–buoyancy convection (at t = 975, Bod = 251.5), and eventually becomes ‘Ƨ’-shape in the corresponding third stage (Bod = 229.9). Meanwhile, there is a weak response of the free surface flow during each transition stage accompanied by periodic hydrothermal waves. The perturbation characteristics of the velocity, the temperature and the transverse location of surface flow are the most prominent at the intermediate height of liquid bridge (y = 0.2). The characteristic of longitudinal velocity mainly presents as the pulsation, while there is also the pulsation inside the oscillation of transverse velocity with the large amplitude (the oscillating period of 2fu = 7.2 s and the amplitude of Au = 0.0057). The periodic characteristic of temperature oscillation is obvious (2fθ = 0.2 s, Au = 0.015).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.