Abstract

AbstractThe interfacial damage behavior of short fiber reinforced rubber sealing composites (SRRC) under fatigue load is researched in this article, where an experimental and cohesive zone model approach are employed. The fiber mass fractions of samples are 2%, 5%, and 10%, respectively. The curves of the fatigue strain (ε n) varying with the fatigue cycle number (n) were obtained by the fatigue test. The damage patterns of SRRC with different fiber mass fractions were confirmed by scanning electron microscope. A finite element model (FEM) was established to predict interfacial fatigue damage, where the cohesive element was imbedded in the interface between fiber and matrix. The results show that the ε n‐n curves of SRRC predicted by FEM agree well with experimental data when fiber mass fractions are high. The samples with 5% fiber mass fraction are optimal to restrain the origination of the interfacial abhesion, and a possible damage path of SRRC is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.