Abstract

Molybdenum sulfide has been widely investigated as a prospective anode material for Li+/Na+ storage because of its unique layered structure and high theoretical capacity. However, the enormous volume variation and poor conductivity limit the development of molybdenum sulfide. The rational design of a heterogeneous interface is of great importance to improve the structure stability and electrical conductivity of electrode materials. Herein, a high-temperature mixing method is implemented in the hydrothermal process to synthesize the hybrid structure of MoS2/V2O3@carbon-graphene (MoS2/V2O3@C-rGO). The MoS2/V2O3@C-rGO composites exhibit superior Li+/Na+ storage performance due to the construction of the interface between the MoS2 and V2O3 components and the introduction of carbon materials, delivering a prominent reversible capacity of 564 mAh g-1 at 1 A g-1 after 600 cycles for lithium-ion batteries and 376.3 mAh g-1 at 1 A g-1 after 450 cycles for sodium-ion batteries. Theoretical calculations confirm that the construction of the interface between the MoS2 and V2O3 components can accelerate the reaction kinetics and enhance the charge-ionic transport of molybdenum sulfide. The results illustrate that interfacial engineering may be an effective guide to obtain high-performance electrode materials for Li+/Na+ storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call