Abstract
The development of highly efficient hydrogen evolution electrocatalysts with platinum-like activity requires precise control of active sites through interface engineering strategies. In this study, a heterostructured Co5.47N/Mo5N6 catalyst (CoMoNx) on carbon cloth (CC) was synthesized using a combination of dip-etching and vapor nitridation methods. The rough nanosheet surface of the catalyst with uniformly distributed elements exposes a large active surface area and provides abundant interface sites that serve as additional active sites. The CoMoNx was found to exhibit exceptional hydrogen evolution reaction (HER) activity with a low overpotential of 44 mV at 10 mA cm−2 and exceptional stability of 100 h in 1.0 M KOH. The CoMoNx(−)||RuO2(+) system requires only 1.81 V cell voltage to reach a current density of 200 mA cm−2, surpassing the majority of previously reported electrolyzers. Density functional theory (DFT) calculations reveal that the strong synergy between Co5.47N and Mo5N6 at the interface can significantly reduce the water dissociation energy barrier, thereby improving the kinetics of hydrogen evolution. Furthermore, the rough nanosheet architecture of the CoMoNx catalyst with abundant interstitial spaces and multi-channels enhances charge transport and reaction intermediate transportation, synergistically improving the performance of the HER for water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.