Abstract

Constructing heterostructure is an efficient method to provide more active sites and optimize electronic structure for improving the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performance. Herein, the 3D FeOOH@Co3O4 heterostructure was constructed using FeOOH layer (10–20 nm) coated on the surface of Co3O4 nanoneedles through the strong hydrolysis of Fe3+. The FeOOH@Co3O4 heterostructure not only retains the nanoneedle structure with open frameworks, but also improves the specific surface area and expedites the charge transfer. The FeOOH@Co3O4-240 heterostructure affords a remarkable OER performance with low overpotential of 228 mV at 10 mA·cm−2 in 1 M KOH solution. The symmetrical urea electrolyzer using FeOOH@Co3O4-240 as both anode and cathode delivers 10 mA/cm2 at 1.43 V. Density functional theory (DFT) calculations unveil that the FeOOH@Co3O4-240 heterostructure could adjust the electronic structure and strengthen the conductivity. This work offered a facile strategy for designing heterojunction catalysts in an economic way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call