Abstract

In present study, bilayer emulsions with different interfacial structures stabilized by casein/butyrylated dextrin nanoparticles (CDNP), chitosan (CS) and chitosan nanoparticles (CSNP) were prepared to overcome the limitations of conventional emulsions. The effects of chitosan morphology and incorporation sequences on the bilayer emulsions were examined. Bilayer emulsions prepared with CDNP as the inner layer and CS/CSNP as the outer layer were observed to have smaller droplet sizes (1.39 ± 86.74 um and 1.45 ± 7.87 um). Bilayer emulsions prepared with CDNP as the inner layer and CS as the outer layer exhibited the lowest creaming index (2.38 %) after 14 days of storage, indicating excellent stability. Furthermore, bilayer emulsion prepared with CDNP as the inner layer and CS as the outer layer also exhibited a uniform water distribution, excellent protein oxidative stability, and uniformly distributed droplets by the measurement of Low-field NMR, intrinsic tryptophan fluorescence and laser confocal laser scanning microscopy. These results indicated that the study provided a theoretical basis for the development and design of bilayer emulsions with different interfacial structures. This study also provides a new material for the preparation of delivery systems that protect biologically active compounds. Bilayer emulsions are promising for applications in traditional and manufactured food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call