Abstract

Efficient water remediation relies on robust and capable catalysts to drive the cutting-edge purification technologies. In this work, Prussian blue analogues (PBA) are engaged as the starting materials to fabricate various transition metal (TM)@carbon composites for water decontamination. The encapsulated metallic cobalt is unveiled to be more favorable to deliver electrons to the adjacent carbons than CoP and Co3O4, due to the low work function, high conductivity and formation of multiple Co-C bonds for electron tunnelling. Such a hybrid structure significantly tailors the electron density of the carbon lattice, which is the decisive factor influencing activating peroxymonosulfate (PMS) to generate highly reactive sulfate radicals for degradation of contaminants, meanwhile achieving outstanding long-term stability. Deliberate material design and theoretical computations unveil the structure-activity regimes of the composite materials in promoted carbocatalysis. This proof-of-concept study dedicates to elucidating the principles in developing fine-tuned and high-performance TM@carbon hybrids for advanced catalytic oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.