Abstract

Perovskite solar cells (PSCs) have achieved high efficiencies with diversified device architectures. In particular, printable mesoscopic PSC has attracted intensive research attention due to its simple fabrication process and superior stability. However, in the absence of hole conductors, the unfavorable energy band alignment between the perovskite and the carbon electrode usually leads to the reduction of device performance, especially the open-circuit voltage (VOC). Here, a p-type molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is utilized to post-treat the perovskite/carbon interface, which benefits the charge transfer and suppresses the charge recombination within the device. As a result, the post-treated device delivers a power conversion efficiency of 18.05% with an enhanced VOC of 1044 mV. This work provides a facile method for tuning the interfacial energy band alignment and improving performance of printable mesoscopic PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.