Abstract
In recent years, the two-dimensional (2D) semiconductor α-In2Se3 has great potential for applications in the fields of electronics and optoelectronics due to its spontaneous iron electrolysis properties. Through ab initio electronic structure calculations and quantum transport simulations, the interface properties and transport properties of α-In2Se3/Au contacts with different polarization directions are studied, and a two-dimensional α-In2Se3 asymmetric metal contact design is proposed. When α-In2Se3 is polarized upward, it forms an n-type Schottky contact with Au. While when α-In2Se3 is polarized downward, it forms a p-type Schottky contact with Au. More importantly, significant rectification effect is found in the asymmetric Au/α-In2Se3/Au field-effect transistor. The carrier transports under positive and negative bias voltages are found to be dominated by thermionic excitation and tunneling, respectively. These findings provide guidance for the further design of 2D α-In2Se3-based transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.