Abstract
Though several Pt-free hydrogen evolution reaction (HER) catalysts have been reported, their employment for industry is challenging. Here, a facile pyrolysis method to obtain phase-pure CrP nanoparticles supported on N, P dual-doped carbon (CrP/NPC) is reported to be tuned toward industrial HER. Interestingly, CrP/NPC exhibits excellent HER activity that requires an overpotential of 34 mV to attain a current density of 10 mA cm-2 , which is only 1 mV positive to commercial Pt/C and a potential of 55 mV to achieve a current density of 200 mA cm-2 which is better than Pt/C. In addition, the long-term durability of CrP/NPC is far superior to Pt/C due to the strong interaction between CrP and C support, restricting any agglomeration or leaching. Density functional theory (DFT) calculations suggest that electronic modulation at the interface (CrP/NPC) optimizes the hydrogen adsorption energy. The Cr-Cr bridge site with required density of states near the Fermi level is found to be the active site. Overall, this report provides a practical scheme to synthesize rarely investigated CrP based materials along with a computational mechanistic guideline for electrocatalysis that can be utilized to explore other phosphides for various applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.