Abstract

Recently, the signs of both superconducting transition temperature (Tc) beyond 60 K and spin density wave (SDW) have been observed in FeSe thin film on SrTiO3 (STO) substrate, which suggests a strong interplay between superconductivity and magnetism. With the first-principles calculations, we find that the substrate-induced tensile strain tends to stabilize the SDW state in FeSe thin film by enhancing of the next-nearest-neighbor superexchange antiferromagnetic interaction bridged through Se atoms. On the other hand, we find that when there are oxygen vacancies in the substrate, the significant charge transfer from the substrate to the first FeSe layer would suppress the magnetic order there, and thus the high-temperature superconductivity could occur. In addition, the stability of the SDW is lowered when FeSe is on a defect-free STO substrate due to the redistribution of charges among the Fe 3d-orbitals. Our results provide a comprehensive microscopic explanation for the recent experimental findings, and build a foundation for the further exploration of the superconductivity and magnetism in this novel superconducting interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.