Abstract
We report the interplay of electrical and thermal fields on the interfacial dynamics of two immiscible fluids inside a periodic porous domain. The alternating current electrothermal mechanism is employed to generate the two phase flow. The surfaces of the porous blocks are wetted with wettability conditions which are manifested by a predefined static contact angle. Depending on the surface affinity and the electrical parameters, two distinctive spatio-temporal regimes can be identified, namely, trapping of the displaced fluid between the two consecutive porous blocks (formation of liquid bridge) and merging of contact lines after traveling the obstacle (complete interface recovery). Results show that liquid bridge formation and complete interface recovery are strongly influenced by the viscosity and thermal conductivity contrasts, in addition to the relevant electro-thermal parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.