Abstract
The interfacial characteristics of nanoparticles and consequent inter-particle interactions at the interface are poorly understood. In this work, the interfacial dynamic and corresponding dilational surface rheology of self-assembled polyelectrolyte/surfactant nanoparticles at the air–water interface are characterized. The nanoparticles are prepared from dodecyltrimethylammonium (DTAB) and poly (sodium 4-styrene-sulfonate) (PSS) by mixing them in aqueous solution. The interfacial dynamic characteristics have been carried out by comparing the surface pressure with the dilational rheological response of these nanoparticles at interface. The results indicate that this type of nanoparticles can adsorb at the interface forming a nanoparticle monolayer, which leads to the surface tension decreased markedly. The dependence of surface pressure on time shows the instability and disassembly process of nanoparticles at the interface. On the basis of these observations, it is proposed that the nanoparticles undergo a dynamic process that interface induced nanoparticles disassembly into DTAB/PSS complexes. The presence of PSS in the subphase can promote the process of nanoparticles disassembly. A transition point in dilational elasticity and viscosity response of the nanoparticles versus oscillation frequency further validate the micro dynamic process of nanoparticles and the formation of polyelectrolyte/surfactant complex monolayer at the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.