Abstract

Ti3C2Tx MXene exhibits great potential application in the microwave absorption (MA) field mainly due to its two-dimensional (2D) characteristic and high dielectric loss. However, their wide application is limited by the inferior properties of without magnetic loss and narrow bandwidth in microwave frequency range. Driven by the further demands of MA performance improvement, sandwich-like CoFe@Ti3C2Tx composites are designed and successfully fabricated by in-situ reduction in the presence of hydrazine, and the minimum reflection loss (RL) value of −36.29 dB at 8.56 GHz could be achieved with the thickness of 2.2 mm. The enhanced microwave absorption of CoFe@Ti3C2Tx composites should originate from the unique sandwich-like structure, good impedance matching characteristic, and enhanced interfacial polarization. In addition, the coating made by CoFe@Ti3C2Tx composites located on the substrates of aluminum plate and fabric exhibited good heat dissipation capability, which was studied through thermal infrared images. This work provides a new avenue for exploring high-performance microwave absorbers of MXene-based magnetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.