Abstract

Electronics components operating under extreme thermo-mechanical stresses are often protected with conformal coating and potting encapsulation to isolate the thermal and vibration shock loads. Development of predictive models for high-g shock survivability of electronics requires the measurement of the interface properties of the potting compounds with the printed circuit board materials. There is scarcity of interface fracture properties of porting compounds with printed circuit board materials. Potting and encapsulation resins are commonly two-part systems which when mixed together form a solid, fully cured material, with no by-products. The cured potting materials are prone to interfacial delamination under dynamic shock loading which in turn potentially cause failures in the package interconnects. The study of interfacial fracture resistance in PCB/epoxy potting systems under dynamic shock loading is important in mitigating the risk of system failure in mission critical applications. In this paper three types of epoxy potting compounds were used as an encapsulation on PCB samples. The potting compounds were selected on the basis of their ultimate elongation under quasi-static loading. Potting compound, A is stiffer material with 5% of ultimate elongation before failure. Potting compound, B is a moderately stiff material with 12% ultimate elongation. Finally potting compound C is a softer material with 90% ultimate elongation before failure. The fracture properties and interfacial crack delamination of the PCB/epoxy interface was determined using three-point bend loading with a pre-crack in the epoxy near the interface. The fracture toughness and crack initiation of the three epoxy systems was compared with the cure schedule and temperature. Fracture modeling was performed with crack tip elements in ABAQUS finite element models to determine the crack initiation and interfacial stresses. A comparison of the fracture properties and the performance of epoxy system resistance to delamination was shown through the three-point bend tests. The finite element model results were correlated with the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call