Abstract

An analysis of a coupled plane elasticity problem of crack/contact mechanics for a coating/substrate system with functionally graded properties is performed, where the rigid flat punch slides over the surface of the coated system that contains a crack. The graded material is treated as a non-homogeneous interlayer between dissimilar, homogeneous phases of the coated medium and the crack is assumed to exist along the interface between the interlayer and the substrate. Based on the Fourier integral transform method and the transfer matrix approach, formulation of the current coupled mixed boundary value problem lends itself to the derivation of a set of three simultaneous Cauchy-type singular integral equations. In the numerical results, the emphasis is placed on the investigation of interactions between the contact stress field and the crack-tip behaviour for various combinations of material, geometric and loading parameters of the coated system. Specifically, effects of interfacial cracking on the distributions of the contact pressure and the in-plane stress component along the coating surface are examined and the mixed-mode stress intensity factors evaluated from the crack-tip stress field with the square-root singularity are provided as a function of punch location. Further addressed is the quantification of the singular character of contact pressure distributions at the trailing and leading edges of the flat punch in terms of the punch-edge stress intensity factors. Implicit in this particular analysis of the coupled crack/contact problem presented henceforth is that the crack closure behaviour under the compressive contact stress field is not taken into account, ignoring the influence of crack-face contact and friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call