Abstract

Beaded fiber composites represent ingenious design strategies capable of resolving the conflicts between strength and toughness in most engineering materials. Although intermittent beading holds great potential for improving mechanical properties, the underlying mechanisms responsible for strengthening and toughening of beaded fiber composites are largely unknown. In this study, we explore near-tip fields of an interface crack between the fiber and the polymeric bead, which is associated with fiber-bead debonding in the course of fiber pullout. The post-yield strain softening followed by strain hardening of polymer matrix, and friction between the bead and matrix are accounted for in the numerical analyses. It is found that pullout of fibers leads to development of multiple shear bands near the tip of the interface crack between the fiber and bead, and coalescence of shear bands gives rise to a zone of high plastic strain. Compared with the low level of friction between the bead and matrix, the bead-matrix interface with high friction coefficient can generate a larger zone of high plastic strain, increasing the propensity of interfacial debonding between the fiber and bead. Furthermore, we have revealed the role of thin coating of carbon nanotubes (CNT). Adding a CNT coating on the fiber enables the emergence of a small zone of high plastic strain near the interface crack tip and reduces the shear stress levels, thereby delaying bead debonding. Additionally, the introduction of CNT coating facilitates stress transfer from the bead to fiber, leading to high pullout force. The findings of this study provide important mechanistic insight into the design principles of beaded fiber composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call