Abstract

As a result of the complexity and difficulty of the lifetime assessment of the thermoelectric (TE) module, the related research is still immature. In this work, to predict the lifetime of the Bi2Te3-based TE module from the perspective of cyclic thermal stress leading to interface cracking, the viscoplastic behavior of the solder layer is first described by the Anand material ontology model, and then the sprouting and expansion of interface cracking of the module are simulated by combining the Darveaux model and the viscoplastic dissipation energy accumulated during the thermal stress cyclic loading. After that, the complete lifetime prediction model of the TE module is established on the basis of the thermal cycling experiments and the finite element simulation calculation data, which can simply and efficiently predict the cycle number of the module resistance rise and its rise rate. The prediction deviations are 6.1 and 6.7%, respectively, verifying the feasibility of the model. The work in this paper can provide a reference for the life evaluation of TE modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.