Abstract

Fretting corrosion in modular orthopedic implants is a well-documented process that may be associated with adverse local tissue reactions, pain, and revisions. Engineering modular junction interfaces to withstand applied fretting motion without surface abrasion could prevent implant degradation and surface damage. Previous work on geometrically modified Ti-6Al-4V/CoCrMo interfaces with increased compliance showed reduced fretting currents and surface damage during short term, variable-load in vitro testing. This study assesses the same interfaces under long-term conditions using an in vitro pin-on-disk fretting corrosion test apparatus. Preliminary variable-load frequency testing of typical control pin geometries showed a frequency-dependent current response, with underlying contact conditions of metal-metal interfaces that remained unchanged. One-million-cycle testing showed diminished fretting currents in all groups by 5× 105 cycles, but consistently lower currents in the high-compliance group. Corresponding fretting currents and work of fretting measurements of high-compliance pins confirmed that minimal fretting was experienced at the interface, with elastic bending of the pin accounting for almost all applied displacement. Debris generated during testing were composed of titanium and chromium oxides, small amounts of cobalt and molybdenum oxides, and sodium and phosphate originating from the surrounding test solution. Post-test analyses of sample surfaces revealed substantially more surface damage on CoCrMo disks than Ti-6Al-4V pins, thought to be a result of adhesive wear of mixed oxide debris on the pin and abrasion of the disk by the oxide debris layer. Surface damage to high-compliance pins suggests some abrasion is unavoidable with geometric modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.