Abstract

All four possible chemical reactivity patterns, namely, outdiffusion of Te (metal-Cd alloy formation), Cd outdiffusion (metal telluride compound formation), comparable chemical reactivity of the metal towards both Cd and Te (no Cd or Te outdiffusion), and chemical inertness of the metal towards CdTe, were differentiated via the differential scanning calorimetry (DSC) technique from a study of the interaction of nine different metals toward CdTe powder. The fusion signatures of free Cd or Te, exotherms due to compound or alloy formation, along with the thermal transitions of the metal telluride and/or the intermetallic were used for this purpose. These reactivity patterns are discussed within the framework of two different thermodynamic models. Both virgin and chemically etched CdTe surfaces were examined, and found to exhibit rather different reactivity trends towards the metal. The ramifications of these results in terms of the electronic properties of metal/CdTe contacts are discussed. Finally, DSC is shown to be useful for probing alterations in the CdTe surface chemistry as a result of the etch treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.