Abstract

1D nanostructured photoelectrodes are promising for application as photoelectrochemical (PEC) devices for solar energy conversion into hydrogen (H2 ) owing to the optical, structural, and electronic advantages. Titanium dioxide (TiO2 ) is the most investigated candidate as a photoelectrode due to its good photostability, low production cost, and eco-friendliness. The obstacle for TiO2 's practical application is the inherent wide bandgap (UV-lights response), poor conductivity, and limited hole diffusion length. Here, a comprehensive review of the current research efforts toward the development of 1D TiO2 based photoelectrodes for heterogeneous PEC water splitting is provided along with a discussion of nanoarchitectures and energy band engineering influences on interfacial charge transfer and separation of 1D TiO2 composited with different dimensional photoactive materials. The key focus of this review is to understand the charge transfer processes at interfaces and the relationship between photogenerated charge separation and photoelectrochemical performance. It is anticipated that this review will afford enriched information on the rational designs of nanoarchitectures, doping, and heterojunction interfaces for 1D TiO2 based photoelectrodes to achieve highly efficient solar energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call