Abstract

The attachment of squaric acid, a non-aromatic molecule, to the surface of TiO2 powder induced the optical absorption of the obtained hybrid material in the visible spectral range due to the interfacial charge transfer complex formation. The optical characterization of the hybrid is supported by the density functional theory calculations of the model cluster. The paramagnetic species generated upon excitation with ultraviolet or visible light, in both TiO2 powders, pristine and surface-modified, were identified conducting low-temperature solid-state and indirect electron paramagnetic resonance (EPR) spectroscopy experiments (spin trapping and spin scavenging). The solid-state EPR experiments indicated the promotion of electrons from the organic moiety to the titania conduction band under visible-light excitation of hybrid. Also, the spin scavenging experiments showed that the electrons generated in the hybrid upon the visible-light activation facilitate the reduction of the radical cations present in the dispersion, while these effects are not observed for pristine TiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call