Abstract

AbstractConstructing heterostructural photoanodes is attractive for elevating the photoelectrochemical (PEC) performance, however, it is a long‐standing challenge to achieve highly efficient interfacial charge transfer. Herein, a CoFe metal‐thiolate framework (CoFe MTF)/Fe2O3 photoanode connected by an interfacial Fe─O─N/S bond is designed to modulate the behavior of charge carriers and improve water oxidation performance. It is disclosed that this interfacial bond functions as a direct charge transfer bridge between shallow trap states of Fe2O3 and CoFe MTF, leading to prolonged carrier recombination lifetimes (85 ns for CoFe MTF/Fe2O3 compared to 37 ns for Fe2O3) and enhanced charge transfer efficiency. Alternatively, a robust interfacial electric field is established in the CoFe MTF/Fe2O3 p–n heterojunction, facilitating efficient charge transfer. As expected, the CoFe MTF/Fe2O3 photoanode exhibits significant enhancement in water oxidation, resulting in a three‐fold increase in photocurrent density compared to pristine Fe2O3. This study highlights the significance of designing interfacially bonded heterostructural photoelectrodes to regulate the transfer characters of charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.