Abstract

In this study, an attempt was made to improve the mechanical properties of AlN by the incorporation of SiC (SCS-6) fibers (TEXTRON Specialty Materials, Lowell, MA) in a unidirectional array. The SiC fibers are one of the most important reinforcements for ceramic- and metal-matrix composites due to high tensile strength (3,450 MPs), high tensile modulus (400 GPa), and low density (3.0 g/cc). The SiC fiber (15 vol %)-reinforced AlN composite was fabricated by hot-pressing in vacuum. The microstructure and chemistry of interfacial regions in as-fabricated and crept composite were characterized using analytical transmission electron microscopy, in order to investigate the nature of the reaction between the fiber and matrix during both composite fabrication and creep tests and to understand the reinforcing effects of SiC fiber in the AlN matrix. Interfacial characteristics of the composite play an important role in influencing the mechanical properties of the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call