Abstract
Ge-based metal-oxide semiconductor structures exhibiting thin ALD-grown high-k dielectric HfO2 films were fabricated and characterized chemically, structurally, and electrically. X-ray photoelectron (XP) spectroscopy confirms the good stoichiometry of the ALD-grown HfO2 films. Furthermore, through the analysis of the XP spectra, the conduction and valence band offsets of HfO2|p-Ge were calculated to be equal to 1.8 ± 0.2 eV and 2.8 ± 0.2 eV, respectively. C(V) and G(V) analysis reveals structures with a well-defined MOS behavior with Dit values in the range of 1011 eV–1 cm–2 and a dielectric constant of HfO2 films of 20. The dominant carrier transport conduction mechanisms were studied through J(V) analysis, performed at both substrate and gate electron injection. Specifically, in the low voltage region (V 3.0 V) and high temperatures (>450 K). Applying Schottky’s emission model the energy barrier heights of HfO2|p-Ge and Al|HfO2 interfaces were evaluated equal to 1.7 ± 0.2 eV and 1.3 ± 0.2 eV, respectively. Combining the XPS and J(V) analysis results, the energy band diagram of Al|HfO2|p-Ge structures is constructed. The calculated values of conduction and valence band offsets via XPS and J(V) measurements are in very good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.