Abstract

Diamond/Cu composites are widely studied as a new generation of thermal management materials in the field of electronic packaging and heat sink materials. The surface modification of diamond can improve interfacial bonding between the diamond and Cu matrix. The Ti-coated diamond/Cu composites are prepared via an independently developed liquid-solid separation (LSS) technology. It is worth noting that there are obvious differences for the surface roughness between the diamond-{100} and -{111} face by AFM analysis, which may be related to the surface energy of different facets. In this work, the formation of titanium carbide (TiC) phase makes up the chemical incompatibility between the diamond and copper, and the thermal conductivities of 40 vol.% Ti-coated diamond/Cu composites can be improved to reach 457.22 W·m-1·K-1. The results estimated by the differential effective medium (DEM) model illustrate that the thermal conductivity for 40 vol.% Ti-coated diamond/Cu composites show a dramatic decline with increasing TiC layer thickness, giving a critical value of ~260 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.